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The expected mean-square error of electron-density maps (observed and

difference) is traditionally estimated as a function of the variance of the

observed amplitudes. The usual purpose is to evaluate the reliability of the

structural parameters suggested by the final electron-density maps. Accordingly,

such calculations are performed after the refinement stage, when the phases are

considered perfectly determined. In this paper a mathematical expression for

the variance (observed, difference and hybrid) is obtained for each point of an

electron-density map for the space group P1 under a different hypothesis: the

current phases are distributed on the trigonometric circle about the correct

values, according to von Mises distributions. The variance calculation may then

be performed at any stage of the phasing process, starting from a random up to a

highly correlated model. It has been shown that the variance does not change

dramatically from point to point of the map; therefore emphasis has been given

to the concept of map variance, which allows an easier study of its properties.

When the model is highly correlated with the target structure the conclusive

formulas reduce to those previously described in the literature. The properties

of the variance are discussed: it is shown that they are the basis for the most

successful phasing procedures.

1. Notation

NREF: number of observed reflections (Friedel opposite

included).

F ¼
PN

j¼1 fj expð2�ihrjÞ = jFj expði’Þ: structure factor of the

target structure.

Fp ¼
Pp

j¼1 fj expð2�ihr0jÞ = jFpj expði’pÞ, where r0j ¼ rj þ�rj:

structure factor of the model structure.P
N ¼

PN
j¼1 f 2

j .P
p ¼

Pp
j¼1 f 2

j .

Fq ¼ F � Fp = jFqj expði’qÞ: structure factor of the ideal

difference structure.

E = A + iB = R expði’Þ, Ep = Ap + iBp = Rp expði’pÞ, Eq =

Aq + iBq = Rq expði’qÞ, R ¼ jFj=
P1=2

N , Rp ¼ jFpj=
P1=2

N .

�ðrÞ ¼ ð2=VÞ
P

h>0 jFhj cosð2�h � r� ’hÞ: general expression

of an electron-density map.

�pðrÞ ¼ ð2=VÞ
P

h>0 jFphj cosð2�h � r� ’phÞ: electron-density

map of the model structure.

�obsðrÞ ¼ ð2=VÞ
P

h>0 mhjFhj cosð2�h � r� ’phÞ: observed

electron density when a model is available.

½�ðrÞ�N ¼ ð2=VÞ
P

h>0 Rh cosð2�h � r� ’hÞ: electron-density

map calculated via normalized structure factors.

�pNðrÞ ¼ ð2=VÞ
P

h>0 Rph cosð2�h � r� ’phÞ: electron-density

map of the model structure calculated via normalized struc-

ture factors.

�obsNðrÞ ¼ ð2=VÞ
P

h>0 mhRh cosð2�h � r� ’phÞ: observed

electron density when a model is available calculated via

normalized structure factors.

PðuÞ ¼ ð2=VÞ
P

h>0 jFhj
2 cosð2�huÞ: Patterson synthesis.

In all the above Fourier syntheses (observed, difference,

hybrid) the term of order zero is omitted. Accordingly, the

average values of the corresponding maps are always zero. By

h > 0 it is meant that the summation is over one half of the

reciprocal space (only one member of each Friedel pair is

included).

var�ðrÞ ¼ h½�ðrÞ�
2
i � ½h�ðrÞi2�: variance of the map � in a

point r.

½var�ðrÞ�N ¼ h½�ðrÞ�N
2
i � fh½�ðrÞ�Ni

2
g: variance of the normal-

ized electron-density map.

DiðxÞ ¼ IiðxÞ=I0ðxÞ: Ii is the modified Bessel function of

order i.

EDM: electron-density modification.

D ¼ hcosð2�h�rÞi: the average is performed per resolution

shell.

�A ¼ Dð�p=�NÞ
1=2.

�2
R ¼ j�j

2
� �

=
P

N : j�j2
� �

is the measurement error.

e ¼ 1þ �2
R.

m = hcosð’� ’pÞi = I1ðXÞ=I0ðXÞ where X = 2�ARRp

�ðe� �2
AÞ
�1.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=au5119&bbid=BB27


s ¼ sin �=�.

CORR: correlation between the model and the target

electron-density maps.

2. Introduction

In the early days of modern crystallography much effort was

dedicated to establishing the accuracy of the results of struc-

ture analysis. In this context the study of electron density

played a major role (Bragg & West, 1930; Booth, 1946, 1947;

Cruickshank, 1949; Cochran, 1951; Cruickshank & Rollett,

1953) with special attention paid to the effect of measurement

errors. In particular, the expected mean-square error in the

electron-density map was estimated (Cruickshank, 1949) as

�2
ð�Þ ¼

1

V2

X
h

�2
ðjFhjÞ; ð1Þ

where �2ðjFhjÞ is the variance of the observed amplitude.

Equation (1) provides a global error, constant for any point of

the map. More interesting results were obtained by Coppens

& Hamilton (1968), who obtained error functions at specific

points in the unit cell:

�2 �ðrÞ½ � ¼
4

V2

X
h>0

�2ðjFhjÞcos2ð2�h � r� ’hÞ: ð2Þ

All the above works addressed interpretation of the maps

obtained in the final stages of crystal structure refinement

(when the phases are considered perfectly determined and

therefore fixed), to assess the reliability of the conclusive

structural parameters. In this paper we will calculate the

expected value of the electron-density map � and its variance

var�ðrÞ in any point r of the map when:

(a) No information on the phases is available (in practice no

model structure is available). Then the phases ’h may be

considered random variables uniformly distributed on the

trigonometric circle.

(b) A model structure is available. Then each phase ’h may

be considered to be distributed around ’ph according to the

von Mises distribution Mð’; X; ’pÞ where

Mð’; X; ’pÞ ¼ ½2�I0ðXÞ�
�1 exp½X cosð’� ’pÞ�: ð3Þ

Equation (3) is the most used and most accurate phase

distribution when a model structure is available. It originates

from the study (Srinivasan & Ramachandran, 1965) of the

joint probability distribution P(Eh, Eph) of which equation (3)

is a conditional distribution. It may be applied in quite a wide

range of examples, from the case in which the model is

uncorrelated with the structure [i.e. equivalent to case (a)

above], to the limit case in which the model coincides with the

structure {then the distribution [equation (3)] becomes a Dirac

delta function centred on ’p}. It may be concluded that the

distribution [equation (3)] is particularly useful for the

purposes of this paper, aiming at estimating the variance of an

electron-density map no matter the quality of the model

structure.

We are also interested in the variance of the difference

Fourier syntheses and in general in that of the hybrid synth-

eses of type �F � !Fp. We use our mathematical results to

provide a key for interpreting various phasing algorithms,

among which we quote EDM techniques, charge flipping and

the VLD algorithm.

3. The estimate of varq(r) in P1

We analyse the cases (a) and (b) of x2.

Case (a): phases ’ are randomly distributed on the trigo-

nometric circle. Since hcosð2�h � r� ’hÞi ¼ 0 for any r,

h�ðrÞi ¼ 0 ð4Þ

for any point r of the map. This is a reasonable result; in the

absence of a model correlated with the electron density of the

target structure, �ðrÞmay have positive or negative values with

the same probability in any point of the map. Since

h½�ðrÞ�2i ¼
4

V2

X
h;k>0

hjFhFkj cosð2�hr� ’hÞ cosð2�kr� ’kÞi;

the only non-vanishing contributions to the average occur

when h = k (we deliberately neglect the cases for which k = nh,

where n is an integer number: their contribution is non-

vanishing only for very small n values). Therefore

h½�ðrÞ�2i ¼
2

V2

X
h>0

jFhj
2
¼

1

V
Pð0Þ;

which is constant for any point of the map. Accordingly

var�ðrÞ ¼
1

V
Pð0Þ: ð5Þ

If normalized structure factors are used as coefficients of the

Fourier synthesis, then

h½�ðrÞ�Ni ¼ 0 and ½var�ðrÞ�N ¼ NREF=V: ð6Þ

In conclusion, when no information is available on the phases,

the variance var�ðrÞ and ½var�ðrÞ�N do not vary with r.

Increasing the data resolution leads to higher values of the

variance; in particular ½var�ðrÞ�N is equal to the measured

reciprocal-space volume.

Case (b): phases are distributed according to equation (3).

This case implies that a model (no matter if poor or accurate)

is available. Then

h�ðrÞi ¼
2

V

X
h>0

mhjFhj cosð2�h � r� ’phÞ ¼ �obsðrÞ: ð7Þ

If the model is uncorrelated with the target structure then �A =

0 for any h and h�ðrÞi ¼ 0, as in case (a). If �A ¼ 1 the

distribution of each ’ is a delta function centred on ’p and

h�ðrÞi � �pðrÞ.

In general
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h�2
ðrÞi ¼

4

V2

X
h;k>0

hjFhFkj cosð2�h � r� ’hÞ cosð2�kr� ’kÞi

¼
4

V2

X
h>0

jFhj
2
hcos2
ð2�h � r� ’hÞi

þ
4

V2

X
h6¼k>0

jFhFkjhcosð2�h � r� ’hÞ cosð2�kr� ’kÞi

¼
2

V2

X
h>0

jFhj
2
þ

2

V2

X
h>0

jFhj
2D2ðXhÞ cosð4�h � r� 2’phÞ

þ
4

V2

X
h6¼k>0

jFhFkjmhmk cosð2�h � r� ’phÞ

� cosð2�kr� ’pkÞ:

ð8Þ

Since the last term in equation (8) is equal to

�2
obsðrÞ �

4

V2

X
h>0

m2
hjFhj

2cos2
ð2�h � r� ’phÞ

we obtain

h�2ðrÞi ¼
2

V2

X
h>0

ð1�m2
hÞjFhj

2
�

2

V2

X
h>0

jFhj
2
½m2

h �D2ðXhÞ�

� cosð4�h � r� 2’phÞ þ �
2
obsðrÞ

and

var�ðrÞ ¼ h½ð�ðrÞ�
2
i � ½h�ðrÞi�2

¼
2

V2

X
h>0

ð1�m2
hÞjFhj

2

�
2

V2

X
h>0

jFhj
2
½m2

h �D2ðXhÞ� cosð4�h � r� 2’phÞ

ð9Þ

or also

var�ðrÞ ¼
2

V2

X
h>0

½1�D2ðXhÞ�jFhj
2

�
4

V2

X
h>0

jFhj
2
½m2

h �D2ðXhÞ�cos2ð2�h � r� ’phÞ:

ð10Þ

Equations (9) and (10) are the formulas we were looking for.

The corresponding expressions for var�NðrÞ are obtained from

equations (9) and (10) just by replacing jFhj by Rh.

4. The properties of the variance in P1

According to equations (9) and (10):

(1) The variance in a point r is the difference of two

contributions: the first (say the constant term) does not vary

with r, the second (say the variable term) depends on r.

Since cosð4�h � r� 2’phÞ � 1 and (see Fig. 1) 1�m2
h 	

m2
h �D2ðXhÞ, the variance is expected to be non-negative in

any point of the unit cell. We will consider the first term of

equation (9), rather than the first term of equation (10), as the

constant component of the variance. Indeed, if we consider the

phases to be statistically independent of each other, the

average value of the variable term in equation (9) is zero,

while the variable term in equation (10) is never negative

because it contains a constant positive component [i.e.

cos2x ¼ ð1þ cos 2xÞ=2].

(2) m2
h �D2ðXhÞ is positive for any value of X (see Fig. 1),

but for X = 0 and X =1, it vanishes. Accordingly, the variable

term vanishes (that is, the variance is constant for any r) when

the model is uncorrelated or when it coincides with the target

structure. The reason why, in these conditions, the variance is a

constant is easily understandable. If CORR = 0 no phase

information is available, and therefore there is no reason that

the variance in one point of the cell is different from the

variance in another point (i.e. the variance is constant and

different from zero). If CORR = 1 the phases are distributed

according to Dirac delta functions and assume their correct

values; the map �ðrÞ is then perfectly defined and the variance

vanishes in any point of the map.

(3) Large contributions to the variable term may arise from

reflections with large observed and small calculated ampli-

tudes {for them jFhj
2
½m2

h �D2ðXhÞ� is expected to be larger,

see Fig. 1}; and, vice versa, the contribution is expected to be

quite small from reflections for which the observed amplitudes

are very small [they do not contribute significantly to �ðrÞ; see

also the last observation in this section].

(4) The three-dimensional periodicity of the variance is

half that of the electron density. Indeed it assumes the same

value in r and in r + u, where u = ua + vb + wc and u, v, w may

be 0 or 1
2.

(5) As is well known, the �obsðrÞ maxima are located

where
P

h>0 mhjFhj cosð2�h � r� ’phÞ is positive and

maximum (e.g. at or near to the atomic positions of the

model); the minima of the variance are located whereP
h>0 jFhj

2
½m2

h �D2ðXhÞ�cos2ð2�h � r� ’phÞ is positive and

maximum. Accordingly, the minima of the variance are

expected to be close to the points where �obsðrÞ attains its

maxima and its minima. Of course, truncation effects due to

the limited experimental resolution contribute to displace

minima and maxima from the expected positions.
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Figure 1
m2

h �D2ðXhÞ versus X, for a suitable interval of X.



It may be useful to introduce a supplementary point of view.

In two recent papers by Burla et al. (2006) and Caliandro et al.

(2007) the main properties of the Fourier synthesis

FF ¼ V�1
X
h>0

jFhj
2 cosð2�h � r� 2’hÞ ð11Þ

are described. The authors applied FF to acentric space

groups to check for the presence of a pseudocentric phase

distribution during Patterson deconvolution phasing proce-

dures. A strong maximum should indicate the presence of a

pseudo-inversion centre. The synthesis [equation (11)] attains

maxima at the points ri + rj; accordingly the distribution

V�1
P

h>0 jFhj
2 cosð4�h � r� 2’hÞ is expected to have maxima

at (ri + rj)/2 (there the variance is expected to show minima).

The variable term of the variance in equation (9) does not

coincide with the synthesis [equation (11)] because it is a

weighted observed Fourier synthesis, with a weight that is not

proportional to the 2’h reliability. However, it may be

expected that the variable term vanishes far away from the

atomic positions.

To check the above conclusions we simulated a crystal

structure in P1 characterized by a very large unit cell: a ten-

atom planar molecule was located on the plane (a, b) and a

model structure was generated by deleting and moving some

of the atoms of the target molecule. In Figs. 2(a) and 2(b) we

show the projection of the variable term on the planes (a, b)

and (a, c), respectively. The distribution is rather flat (much

flatter if the full variance is taken into consideration): minima

and maxima are concentrated close to the plane (a, b) [and,

owing to property (4) above, also close to the parallel plane at

c = 1/2]; it is quite flat in all the other points of the unit cell.

(6) In equation (9) each reflection adds: (i) a positive or

negative contribution to the variable term according to

whether cosð4�h � r� 2’phÞ is negative or positive; (ii) an

always positive contribution to the constant term, larger than

the contribution described in (i) [see Fig. 1 for the difference

between ð1�m2
hÞ and m2

h �D2ðXhÞ�. Accordingly, the value of

the constant term is expected to be remarkably larger than the

values of the variable term for any r.

To verify the effects of the correlation between model and

target structure, for the same simulated target structure

described in point (5) we created five models with different

correlations with the target (the correlation may be estimated

by the corresponding h�Ai values, where h�Ai is the average of

the �A values calculated per resolution shell). For each of

these models we computed the value of

oscv ¼ max½var�ðrÞ� �min½var�ðrÞ�
� �

=const

when r varies over all the points of the variance map. Oscv

provides, for a given variance map, the maximum oscillation of

the variance as a percentage of the constant term (const in the

formula). The values of oscv are plotted in Fig. 3 (blue

squares) versus the parameter h�Ai. It may be observed: (i)

oscv is in the range 0.14–0.30 for the tested h�Ai values; (ii) in

accordance with point (i), the variance does not significantly

change with the point r; (iii) in x5 we will consider �obsðrÞ=�� as

the signal/noise ratio, where �� ¼ ðvar�Þ
1=2. It is therefore

relevant to show (see Fig. 3) the trend of

osc� ¼ max½��ðrÞ� �min½��ðrÞ�
� �

=ðconstÞ1=2

for different values of CORR. It varies in the interval 0.07–

0.15. Since �obsðrÞ varies very strongly with r, the value of

�obsðrÞ=ð��Þ
1=2 depends mainly on the variation of the

observed electron-density distribution.

In accordance with points (i)–(iii) and in order to simplify

our study of the variance properties, we will consider the
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Figure 2
Target (simulated) crystal structure in P1: the planar ten-atom molecule
(in red in Fig. 2a) is on the plane (a, b). A model (in blue) was generated,
for which �A ¼ 0:7, by deleting some of the target atoms. (a) and (b) show
the projection of the variable term on the planes (a, b) and (a, c),
respectively.



variance approximately constant for all the points of the unit

cell; we do not exclude the possibility, however, that, at a

deeper analysis, the variable term may have some role in the

phasing procedures in P1. From now on

var�ðrÞ ¼ var� ¼
2

V2

X
h>0

ð1�m2
hÞjFhj

2
ð12aÞ

and

��ðrÞ ¼ �� ¼ ðvar�Þ
1=2

ð12bÞ

will represent the variance of the map and its standard

deviation. The above results may be rather unexpected, but

are justified by the following observation: for a given CORR

value the variance in an atomic position cannot be very

different from the variance calculated in a point far from it.

Indeed, a small variance in the atomic positions implies that

the zero-density points are well estimated. Vice versa, a large

variance in the atomic positions implies also that the back-

ground points are badly estimated.

�� should not be confused with the standard deviation of

the pixel intensity distribution of an electron-density map (let

us denote it by �d). �d is widely used in protein crystal-

lography: very often only those pixels of a map having a

density larger than n�d, where n is a suitable rational number,

are selected for further calculations. �� and �d have a quite

different meaning and therefore a quite different behaviour.

To give a numerical idea of the relationship between the two

quantities, we plot in Fig. 3 �� and �d versus h�Ai for the same

six models for which we calculated the variance. It is easily

seen that �� and �d are anticorrelated: the first diminishes and

the second increases when CORR improves.

Let us consider �� and �d trends versus data resolution.

According to equations (12a) and (12b) the value of var�, and

therefore of ��, for a given model, increases in the case of

better data resolution [in this case the summation on the right-

hand side of equation (12a) involves a larger number of

terms]. Also �d increases when the resolution improves (then

positive peaks are stronger). In Fig. 4, for the protein PDB

(Protein Data Bank) refcode 1bxo with RES = 0.95, and for

two model structures with a mean phase error with respect to

the target (say MPE) equal to 45 and 66
, respectively, we

show the values of �� and of �d when the data are cut at

different resolutions. We observe: (i) �� and �d curves do not

coincide but show a similar trend with the resolution; (ii)

�d � �� for the better correlated model, but �d <�� for the

poor model. That agrees well with Fig. 3: indeed �A = 0.16 for

the poor model, �A = 0.43 for the better correlated model.

Both �� and �d decrease when the average thermal factor

increases (e.g. because the moduli jFhj
2 decrease more rapidly

with increasing values of sin �=�), and both depend on the

density of the scattering power of the target structure (�� and

�d will be different for two structures with identical atomic

positions but with different scattering power).

If E maps are used, �� and �d are expected to have a sharper

trend. Indeed, in this case we deal with non-band-limited

distributions: then hR2i ¼ 1 no matter the resolution shell. In

this situation �� and �d are expected to increase very rapidly

with RES, much more than for F maps.

The consequences of the above conclusions cannot be fully

estimated if one does not consider how the electron density

itself varies with the parameters considered above. We will

discuss this point in x6.

A last point deserves to be examined. In a recent paper

Caliandro et al. (2008) assumed, as in this work, that a model

structure is available and that each phase ’h is distributed

around ’ph according to equation (3). They focused their

attention on the difference electron density, and derived for

the corresponding Fourier coefficients the variance expression

�qh
¼ ð1�m2ÞjFhj

2:

The result was obtained by assuming the model parameters to

be constants of the mathematical approach; as a consequence,

the above equation may also be applied not only to the

difference electron density but also to the electron density
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Figure 4
Protein 1bxo: �� (triangles) and �d (squares) versus RES for two model
structures, having MPE = 45
 (yellow) and 66
 (green), respectively.

Figure 3
Oscv (blue line), osc� (green line), �� (red line) and �d (yellow lines) are
plotted versus h�Ai. The five blue and yellow squares, and the red and
yellow triangles correspond to the five models of the simulated target
structure described in the text.



itself (see also x5). Accordingly, var� is nothing else but the

sum of the variances of the single reflections, considered

statistically independent, divided by the squared unit-cell

volume:

var�ðrÞ ¼
1

V2

X
h

�2
qh:

If the distribution of the phases is considered independent of

the distribution of measurement errors (that is a reasonable

assumption because errors on measurements depend on the

experiment, while the phase distribution depends on the

model), we can combine equations (2) and (12a) into

var�ðrÞ ¼
2

V2

X
h>0

½2�2ðjFhjÞcos2ð2�h � r� ’hÞ þ ð1�m2
hÞjFhj

2
�;

ð13aÞ

providing the variance map for any electron density, no matter

the degree of correlation between model and target structures.

If the correlation between model and target structures is not

very high, the contribution to the variance arising from

measurement errors is negligible; indeed it depends on

�2ðjFhjÞ, which is usually quite a small percentage of the jFhj
2

moduli. The contribution arising from weak reflections, for

which measurement errors are comparable with diffraction

amplitudes, may be neglected with respect to that provided by

strong reflections.

Vice versa, at the end of a satisfactory structure refinement,

m2
h is close to unity for nearly all the reflections, the variance is

mainly determined by measurement errors and varies from

point to point in the map. It may be worthwhile noticing that

some inadequacy of the refined structural model may cause

uncertainty on some phases, in particular on the weak reflec-

tion phases, which may be characterized by non-unitary m2
h

values. In this case the contribution to the variance arising

from the phase distribution is no longer negligible and may

substantially contribute to the total map variance. It may also

occur that the variable term, described in x4, may play some

role in a better definition of the variance; specific experimental

tests should be useful to confirm the conjecture.

If the electron-density map is calculated by normalized

structure factors, then

var�NðrÞ ¼ var�N

¼
2

V2

X
h>0

hX
h>0

�2ðjEhjÞ cos2ð2�h � r� ’hÞ

þ ð1�m2
hÞjEhj

2
i
: ð13bÞ

5. The estimate of the expected maps and of the
variances for some Fourier syntheses

We will consider three types of difference Fourier synthesis,

under the assumption that each phase ’h is distributed on the

trigonometric circle according to equation (3).

5.1. Case 1, the ideal difference Fourier synthesis

Let

�qðrÞ ¼ �ðrÞ � �pðrÞ ¼
2

V

X
h>0

jFqhj cosð2�h � r� ’qhÞ: ð14Þ

The corresponding map is calculated via the coefficients

Fqh ¼ jFqhj expði’qhÞ ¼ jFj expði’hÞ � jFpj expði’phÞ: ð15Þ

Since the phases ’h are supposed unknown, we can only

estimate the expected value of �qðrÞ:

h�qðrÞi ¼ h�ðrÞi � �pðrÞ ¼ �obsðrÞ � �pðrÞ

¼
2

V

X
h>0

ðmhjFhj � jFphjÞ cosð2�h � r� ’qhÞ: ð16Þ

Equation (16) agrees with Main (1979), Burla, Caliandro et al.

(2010) and Burla, Giacovazzo & Polidori (2010). Since �pðrÞ is

the prior information, it is constant with respect to the chosen

set of variables; accordingly the variance of �qðrÞ (say var�q)

will satisfy the condition

var�q ¼ var�: ð17Þ

5.2. Case 2, the weighted ideal difference electron density

Let

�wq ¼ � � h�Ai�p ¼
2

V

X
h>0

jFwqhj cosð2�h � r� ’wqhÞ; ð18Þ

where

Fqwh ¼ jFwqhj expði’wqhÞ ¼ jFj expði’hÞ � h�AijFpj expði’phÞ:

ð19Þ

The parameter �A in equation (18) may be defined as

h�Ai ¼ h�AðsÞi, where �AðsÞ is the �A value calculated for the

resolution corresponding to s.

The expected value of �wqðrÞ may be calculated as follows:

h�wqðrÞi ¼ h�ðrÞi � h�Ai�pðrÞ ¼ �obsðrÞ � h�Ai�pðrÞ

¼
2

V

X
h>0

ðmhjFhj � h�AijFphjÞ cosð2�h � r� ’phÞ:

ð20Þ

Since h�Ai�p is a constant with respect to the chosen set of

variables, the variance of �wq is given by

var�wq ¼ var�q ¼ var�: ð21Þ

5.3. Case 3, the hybrid ideal difference electron density

Let � and ! be any pair of real numbers, and

�QðrÞ ¼ ��ðrÞ � !�pðrÞ ¼
2

V

X
h>0

jFQj cosð2�h � r� ’QÞ: ð22Þ

Its Fourier coefficients are
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FQ ¼ �jFhj expði’hÞ � !jFphj expði’phÞ

and its mean value is

h�QðrÞi ¼
2

V

X
h>0

ð�mjFhj � !jFphjÞ cosð2�h � r� ’phÞ: ð23Þ

Accordingly

var�QðrÞ ¼ �
2var�qðrÞ ¼ �

2var�ðrÞ: ð24Þ

For all the three cases described above, the variance will

show the same trend (versus the resolution or versus CORR)

described in x4. Of particular interest is the use of the variance

for assessing the meaningfulness of the difference electron

density when CORR is close to unity: after the structure

refinement, owing to some residual inadequacy of the model,

the variance may be determined by the combined contribution

arising from the uncertainty on some phases (usually those

associated with weak amplitudes) and from measurement

errors. In this case the variable term in the variance expression

may not be negligible. It is worthwhile noticing that we

assumed an ideal scaling in our treatment of the difference

electron density (and in general for all the hybrid syntheses).

However, as observed by Rees (1976, 1978), the mean-

ingfulness of the variance also depends on the correct scaling

between �ðrÞ and �pðrÞ, a condition quite critical for multipolar

refinement in electron-density studies.

6. The signal/noise ratio in electron-density maps

In x3 we showed that, if the phases are assumed to be

distributed on the trigonometric circle according to equation

(3), the variance of the electron density �ðrÞ in P1 does not

vary significantly with r; in simple terms, it is nearly constant,

no matter if r is on, close to, or far from the atomic positions,

and no matter the value of the electron density in that point.

We observed in addition that the value of var�, for a given

model, increases when the resolution improves, decreases

when the average thermal factor increases and depends on the

density of the scattering power of the target structure. The

above statements hold also for the various types of difference

Fourier synthesis, and are rather surprising if one does not

consider the corresponding changes of �obsðrÞ, h�qðrÞi, h�wqðrÞi

and h�QðrÞi. We will show that such properties are the basis of

most of the modern successful phasing procedures.

Let us first consider the �ðrÞ map. It is accessible only at the

end of the phasing procedure: during the phasing process

�obsðrÞ is its best approximation, and may be considered the

available signal. Consequently, more than the variance in

itself, we have to consider the quantity

SðrÞ=N ¼ �obsðrÞ=ðvar�Þ
1=2; ð25Þ

which may be considered the ‘signal-to-noise ratio’. For

example, when data resolution improves, both �obsðrÞ and var�
increase: the ratio [equation (25)], calculated in the peak sites,

can establish if atoms are located with less or greater accuracy.

If normalized structure factors are used for calculating the

electron-density maps, equation (25) changes to

SðrÞ=N ¼ �obsNðrÞ=ðvar�NÞ
1=2:

Let us now suppose that �obsðrÞ has been calculated and we

want to apply EDM techniques for improving the model. Since

var� is constant, in the absence of any additional prior infor-

mation (which, however, is often available in protein crystal-

lography, e.g. knowledge of the envelope), the only way of

selecting the pixels with the largest SðrÞ=N value is the use of a

threshold TRH on the �obsðrÞ densities. Then, automatically,

the threshold selects the pixels for which SðrÞ=N is larger.

An inverse Fourier synthesis based on the selected pixels

may lead to phase values better than those used for the

calculation of �obsðrÞ (it is a sort of clean-up technique). This

criterion is used in some EDM procedures (Shiono &

Woolfson, 1992; Refaat & Woolfson, 1993; Giacovazzo &

Siliqi, 1997).

If the main interest is to drastically modify a model without

destroying it, a good way is reversing the sign of the density in

some region of the map (no matter if in the positive or in the

negative region). If this technique is used for ab initio phasing,

the region to reverse cannot be part of the solution, otherwise

convergence would never be reached. Charge flipping

(Oszlányi & Süto��, 2004, 2005, 2007; Palatinus & Chapuis, 2007)

uses exactly this technique: it cyclically reverses the sign of a

small sheet of an electron-density map with density close to

zero. When a good model is obtained, reversing the sign of

SðrÞ>TRH in this region provides a negligible perturbation of

the model which cannot destroy it.

The technique is also used in non-ab initio phasing, when it

is fruitful to perturb the model in order to obtain, via EDM

techniques, a better convergence to the correct phases

(Abrahams & Leslie, 1996).

As stated before, the number of pixels with positive density

for which SðrÞ=N>TRH increases with CORR, provided

TRH is sufficiently large. As a consequence, those EDM

techniques that use, for the Fourier map inversion, a fixed

percentage of pixels [for example, 2–4%, those with the largest

positive density – this is the case of Giacovazzo & Siliqi (1997)

and Burla, Giacovazzo & Polidori (2010) in the VLD algo-

rithm] practically use a different SðrÞ=N threshold in each

inversion cycle (on supposing that CORR changes from cycle

to cycle).

A different strategy, fixing the same TRH value for all the

EDM cycles, implies the variation of the percentage of the

pixels (say PERC) used for the Fourier inversion. According

to this last criterion, if CORR improves, PERC automatically

increases. The two strategies may produce quite different

results when used in automatic EDM procedures. In Fig. 5 we

show the trend of the average phase error (MPE) for a small-

molecule structure (SCHWARZ, C46H70O27; Sheldrick, 1982)

and for a medium-sized molecule (TVAL, C54H90N6O18, Z = 2;

Loll et al., 1997) both crystallizing in P1. Phase refinement

starts from 72
 for SCHWARZ and from 76
 for TVAL. In

one phase-refinement strategy PERC is maintained constant

research papers

216 Giacovazzo and Mazzone � Variance of electron-density maps in P1 Acta Cryst. (2011). A67, 210–218



(equal to 3%; Giacovazzo & Siliqi, 1997): after 100 EDM

cycles MPE drops to 45 and 39
 for SCHWARZ and TVAL,

respectively. It may be noted that, assuming PERC = 3% at

the beginning of the EDM refinement, this corresponds to

fixing TRH to 1.57 and 1.77 for SCHWARZ and TVAL,

respectively. At cycle 100 PERC = 3% corresponds to TRH =

4.86 and 5.58, respectively, for SCHWARZ and TVAL.

If, during the EDM cycles, the threshold TRH = SðrÞ=N for

SCHWARZ and TVAL is constantly fixed to 1.57 and 1.77,

respectively, then MPE drops to 21 and 24
 in 100 EDM cycles.

The PERC values corresponding to TRH = 1.57 and 1.77 are

3% for both SCHWARZ and TVAL at EDM cycle 1, 14% and

13% at cycle 100.

The above results show that the two strategies may provide

quite different results. It cannot be claimed, however, that one

is better than the other: many extended tests are necessary,

taking into account data resolution, structure size, average

thermal factor etc. Nevertheless, the results described above

indicate that an investigation taking into account the ratio

SðrÞ=N may be rewarding.

7. The signal/noise ratio in difference and hybrid
Fourier maps

We will analyse the values of SðrÞ=N in the difference electron

densities considered in x5, and we will compare them with the

corresponding ratios of the �ðrÞ map. The comparison will

confirm the most relevant properties of such maps.

7.1. Case 1, ideal difference Fourier synthesis

Here

SðrÞ=N ¼ ½�obsðrÞ � �pðrÞ�=ðvar�Þ
1=2: ð26Þ

We observe:

(a) When CORR � 0, according to equations (12a) and

(12b), var� attains its maximum; then equation (26) coincides

with

SðrÞ=N ¼ ��pðrÞ=ðvar�Þ
1=2: ð27Þ

If the random model has the same global scattering power of

the target, the value of SðrÞ=N provided by ��pðrÞ (calculated

in correspondence with the peaks in the map) is large and

comparable with that obtained by an observed electron

density highly correlated with the target. The meaning of the

signal is however different: in the case of equation (27) the

negative peaks of the map suggest eliminating the model, in

the observed map case the peak positivity confirms the model.

The signal provided by equation (27) diminishes with its

scattering power [i.e. it is more informative to generate a large

random scattering model than a small one; see Burla,

Giacovazzo & Polidori (2010)]. It may be concluded,

according to Burla, Caliandro et al. (2010), that a model, even

if random, may provide, through the difference Fourier

synthesis [equation (16)], reliable information on �qðrÞ

because the signal-to-noise ratio is high. The reader is referred

to Table 2 of that paper to check this surprising result: in the

table h�’qi, the average phase error on the phase ’q, is shown

for some random models.

(b) When CORR increases the amplitude of the positive

peaks in �obsðrÞ � �pðrÞ increases while the denominator of the

right-hand side of equation (27) diminishes. Then positive

peaks start to be part of a new model, and negative peaks tend

to vanish where �obsðrÞ nearly overlaps with �pðrÞ. To check

how SðrÞ=N varies with CORR we calculated its largest posi-

tive and negative values for the five examples used in x3. The

results are shown in Fig. 6. As expected, the largest absolute

values of SðrÞ=N for loosely correlated models are obtained

for the curve ðS=N�Þ (where it reaches the value �19,

corresponding to a model atom in a false position). The largest

positive value of SðrÞ=N is obtained for the curve ðS=NþÞ

(where it reaches the value of 25, corresponding to a missed

atom). Obviously, the largest positive ratios SðrÞ=N are

obtained for observed electron densities, where values close to

65 are observed.
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Figure 6
The largest positive ðS=NþÞ and largest negative ðS=N�Þ values of
SðrÞ=N for the five models of the simulated target structure described in
x3. On the abscissa are the corresponding h�Ai values.

Figure 5
SCHWARZ and TVAL: mean phase error (MPE) versus EDM cycles.
TRH and PERC indicate the EDM strategies: in the first case the
threshold TRH ¼ SðrÞ=N is maintained fixed, in the second case the
percentage of the pixels used in the Fourier inversion is constant.



7.2. Case 2, weighted difference electron density

We notice:

(a) According to equations (18) and (20) the signal-to-noise

ratio is given by

SðrÞ=N ¼ ½�obsðrÞ � h�Ai�pðrÞ�=ðvar�Þ
1=2: ð28Þ

(b) For an uncorrelated model the signal vanishes: no

information is provided on the ideal �qðrÞ.

(c) For increasing values of CORR, in equation (28) the

numerator increases and the denominator decreases. The map

becomes more informative.

Both the properties (b) and (c) are also known features of

the difference maps calculated with Read (1986) coefficients

ðmhjFhj �DjFphjÞ expði’phÞ or ðmhjRhj � �AjRphjÞ expði’phÞ.

7.3. Case 3, hybrid ideal difference electron density

According to equations (23) and (24)

SðrÞ

N
¼
��obsðrÞ � !�pðrÞ

�½var�ðrÞ�1=2
: ð29Þ

We will comment on equation (29) according to two para-

meters, �=! and CORR:

(a) When CORR � 0 var� attains its maximum value and

equation (29) coincides with

SðrÞ=N ¼ �!�pðrÞ=�ðvar�Þ
1=2: ð30Þ

The signal (constituted by the negative peaks of the ��p map)

is maximized for large scattering power of the random model

and diminishes when the ratio �=! increases (the variance

increases with �2); as a consequence the Fourier syntheses with

� >! are expected to be less correlated with the ideal electron

density �Q. This is the case of the widely used Fourier synthesis

characterized by � ¼ 2 and ! ¼ 1, which is mostly employed

for its capacity of reducing the model bias rather than for

immediately providing a better map correlation.

(b) The value of SðrÞ=N increases with increasing values of

!=�: maps with high values of !=� are expected to provide, via

the negative peaks, high-quality information on ’Q, particu-

larly for random models.

(c) The amplitude of the positive peaks in ��obsðrÞ � !�pðrÞ

increases with increasing values of CORR, and the quality of

the signal improves proportionally to the value of �. For large

� values positive peaks may easily become part of a new

model. It may be concluded that Fourier syntheses with � >!
may be electively employed for models with sufficiently high

correlation with the target, to reduce the model bias and at the

same time to improve the correlation. Fourier syntheses with

� <! are more useful when applied to very poor models, for

drastically changing them up to when a satisfactory model is

achieved. Paradoxically, such types of hybrid Fourier synthesis

are less often used in crystallography.

8. Conclusions

A new approach for calculating in P1 the variance of electron-

density maps is described. Observed, difference and hybrid

electron densities are considered under the assumption that

the phases are distributed on the trigonometric circle

according to von Mises distributions centred on the correct

phase values. A general formula for the variance was obtained:

it does not remarkably change with r, no matter if r is located

on a peak or on a low-density point. The concept of map

variance was then introduced, and its dependence on various

parameters (e.g. correlation between model and target struc-

ture, resolution etc.) was studied.

The results were used to analyse the quality of the infor-

mation provided by any type of density map through a

criterion of type ‘signal to noise’. Such criterion enabled us to

correlate the variance properties with the most successful

phasing procedures.

For reader usefulness it is anticipated that the concept of

map variance does not hold for space groups with symmetry

higher than P1. This property opens new perspectives for the

phasing procedures: indeed, according to this result, two

points of an electron-density map may have the same density

but a different variance, and therefore they may have different

signal-to-noise values.
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